HW 2, PROBABILITY I

Let μ be a fixed probability measure on \mathbb{R}. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable, integrable function. Recall the definitions

$$
\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}
$$

for $p \in[1, \infty)$, and

$$
\|f\|_{\infty}=\operatorname{ess} \sup _{x \in \mathbb{R}}|f(x)| .
$$

1. Prove that for a given bounded measurable function $f(x),\|f\|_{p} \rightarrow_{p \rightarrow \infty}\|f\|_{\infty}$.
2. Prove that for a pair of measurable integrable functions f and g,

$$
\int_{\infty}^{\infty}|\mathrm{fg}| \mathrm{d} \mu \leq\|\mathrm{f}\|_{1}\|\mathrm{~g}\|_{\infty} .
$$

3. Prove that $\|f\|_{p} \leq\|f\|_{p^{\prime}}$, given that $1 \leq p \leq p^{\prime} \leq+\infty$, as long as μ is a probability measure. Conclude that if for a positive integer k the k-th moment of a random variable X exists, then all of the m-th moments for $1 \leq m \leq k$ exist.
4. Show that for every integrable function $f(x)$ on \mathbb{R}, the function $g(x)=\int_{\infty}^{x} f(t) d t$ is continuous.
5. Prove Markov's inequality: given a random variable X, an event A and a non-negative function $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{+}$,

$$
P(X \in A) \cdot \inf _{y \in \mathcal{A}} \varphi(y) \leq \mathbb{E} \varphi(X)
$$

6. Find the expectation and the variance for the random variable X with geometric distribution with parameter $p \in(0,1)$, that is, satisfying for $k=1,2, \ldots$

$$
P(X=k)=p(1-p)_{1}^{k-1}
$$

7. Let X_{1}, \ldots, X_{n} be random variables with bounded first moments, and let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, that is, for all $\lambda \in[0,1], x, y \in \mathbb{R}^{n}$,

$$
\varphi(\lambda x+(1-\lambda) y) \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

Show that

$$
\mathbb{E} \varphi\left(X_{1}, \ldots, X_{n}\right) \geq \varphi\left(\mathbb{E} X_{1}, \ldots, \mathbb{E} X_{n}\right)
$$

provided that $\mathbb{E}\left|\varphi\left(X_{1}, \ldots, X_{n}\right)\right|<\infty$.
8. Let X be a Poisson random variable with the expectation λ. Find $\mathbb{E} X^{3}, \mathbb{E} X^{4}, \mathbb{E} X^{5}$.
9. Let X be a random variable with density $\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$; prove that $\mathbb{E} X=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$, therefore justifying the name "normal random variable with mean μ and standard deviation σ " for X.
10. Prove that for every random variable X with bounded second moment,

$$
\lim _{n \rightarrow \infty} \frac{n^{2} P(|X| \geq n)}{\mathbb{E} X^{2}}=0
$$

thus showing that Chebychev's inequality is not sharp for "long enough tails". Hint: use monotone convergence theorem.
11. Consider sequence of random variables $X_{n}, n \geq 1$. Suppose that for $p>0$ one has

$$
\sum_{n=1}^{\infty} \mathbb{E}\left|X_{n}\right|^{p}<\infty
$$

Prove that $X_{n} \rightarrow 0$ almost everywhere.
12. Fix a probability space $(\Omega, \mathcal{F}, \mu)$. Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be sequences of random variables. Let $X_{n} \rightarrow^{\mu} X$ and $Y_{n} \rightarrow^{\mu} Y$. Suppose that $P(X \neq Y)=0$. Conclude that for every $\epsilon \geq 0$,

$$
\mathrm{P}\left(\left|X_{n}-Y_{n}\right| \geq \epsilon\right) \rightarrow_{n \rightarrow \infty} 0 .
$$

